Category: Nature


How to make cow manure compost


Composting is a great way to turn organic waste into nutrient-rich soil. One common material used for composting is cow manure. Cow manure is a rich source of nitrogen, phosphorus, and potassium, making it an ideal ingredient for compost. In this article, we’ll discuss the steps involved in making cow manure compost.

cow dung compost

cow dung compost

 

Step 1: Collecting the cow manure The first step in making cow manure compost is to collect the cow manure. You can collect it from a local farm or buy it from a garden center. Make sure that the cow manure is well-aged and has been stored for at least six months. Fresh cow manure is too strong and can burn plants, so it’s important to let it age before using it in compost.

Step 2: Preparing the compost pile The next step is to prepare the compost pile. You can use a compost turner or create a compost pile on the ground. If you’re using a compost turner, make sure it’s at least 3 feet wide, 3 feet deep, and 3 feet tall. This will ensure that there’s enough space for the cow manure to decompose properly.

cow dung compost

cow dung compost

Step 3: Adding the cow manure Once the compost pile is ready, it’s time to add the cow manure. Spread a layer of cow manure on the bottom of the compost pile, making sure it’s evenly distributed. Then add a layer of dry leaves or straw on top of the cow manure. This will help balance the nitrogen-rich cow manure with carbon-rich material.

Step 4: Turning the compost pile After adding the cow manure and dry leaves, it’s time to turn the compost pile. This is an important step as it helps to mix the ingredients and ensure that the compost decomposes evenly. Use a cow dung compost turner to turn the compost pile every few weeks. Make sure to mix the outer layer with the inner layer to speed up the composting process.

windrow compost turner for cow dung compost

windrow compost turner for cow dung compost

Step 5: Watering the compost pile Cow manure compost needs to be kept moist, but not too wet. Water the compost pile regularly to keep it moist. If the compost pile is too wet, it can become anaerobic, which can slow down the decomposition process. Aim for a moisture content of around 50%.

Step 6: Checking the temperature of the compost pile As the cow manure compost decomposes, it will generate heat. Check the temperature of the compost pile regularly using a compost thermometer. The ideal temperature for composting cow manure is between 120 and 150 degrees Fahrenheit. If the temperature is too low, the compost pile may not decompose properly. If the temperature is too high, it can kill the beneficial microorganisms that break down the compost.

Step 7: Harvesting the compost After several weeks or months, the cow manure compost will be ready to use. The compost will be dark brown and crumbly, with a rich earthy smell. Use a garden fork to harvest the compost from the bottom of the pile. Spread the compost over your garden beds or mix it with potting soil to enrich it with nutrients.

In conclusion, making cow manure compost is a simple process that requires a little patience and effort. By following these steps, you can turn cow manure into a nutrient-rich soil amendment that will benefit your plants and the environment.

Of course, you can check this page for more details about how to make cow manure compost!

How to Make Compost From Cow Dung

Our Reader Score
[Total: 0 Average: 0]

cow dung powder making machine

May 5, 2023

Agriculture, Animal Farm, Animal manure management, BB fertilizer production, Bentonite Pellets Making Mahcine, Cow dung as fertilizer, Cow dung fertilizer making machine, Dispose of animal manure, Double Roller Granulator, Dry fertilizer pellet mking machine, Earthworms, Etc, Enterpreneurship, Fertilizer, fertilizer coater, fertilizer coating machine, Fertilizer Drying Machine, fertilizer equipment, Fertilizer Factory, Fertilizer Granulating Machine, fertilizer granulator, fertilizer making, fertilizer making machine, Fertilizer Plant, fertilizer processing, fertillizer production line, Fiber, Financing, Food, Fuels, Fun, Governanace & Policy, granular compound fertilizer production equipment, Granulating Machine For Fertilizer, Growing, Health, Life Long Learning, machine for coating fertilizer pellets, making bio fertilizer, making organic fertilizer, manure recycling, Manure separator, Nature, NPK compound fertilizer production line, organic fertilizer granulator, Organic fertilizer making line, Organic fertilizer manufacturing, organic fertilizer manufacturing process, Organic Fertilizer Producing, Organic Fertilizer Production, Organic Fertilizer Production Line, organic fertilizer production machine, Organic Fertilizer Wet Granulating, Organic Waste Compost, Pelletizer Used For Bentonite, Polar Sam, poultry manure pelletizer, powdery organic fertilizer making, Process, Processing, Project Solutions, Recreation, Recycling, Safety Nets, Sequestrattion, Shared Stuff, Solid Waste, Storage, Technology, Time & Money, Transit, Trransporation

Comments Off on cow dung powder making machine


Cow dung powder making machines are a relatively new innovation that has been developed to make the process of converting cow dung into usable fertilizer much easier and more efficient. This machine is a vital tool for farmers and gardeners who are looking for a cost-effective and environmentally-friendly way to enrich their soil and improve the quality of their crops.

powder fertilizer production line site

powder fertilizer production line site

Cow dung, which is also known as cow manure, is a natural by-product of the cattle industry. It is a rich source of nutrients and organic matter that can be used to improve soil health and promote plant growth. However, cow dung is typically quite difficult to handle and process, as it is often wet and contains a high percentage of water.

The cow dung powder making machine is designed to overcome these challenges by drying and pulverizing the cow dung into a fine powder that can be easily stored, transported, and applied to crops. The machine consists of several components, including a drying system, a pulverizing system, and a screening system.

The first step in the process is to dry the cow dung. This is typically done by exposing the dung to heat in a drying chamber. The temperature and humidity inside the chamber are carefully controlled to ensure that the dung is dried thoroughly but does not become too hot or brittle.

Once the dung is dry, it is pulverized using a machine called a pulverizer. This machine uses a series of blades or hammers to break the dried dung into small particles. The particles are then screened to remove any large or uneven pieces, leaving behind a fine powder that is ready to be used as fertilizer.

The cow dung powder making machine offers several advantages over traditional methods of processing cow dung. For one, it is much faster and more efficient, allowing farmers to process large quantities of dung in a relatively short amount of time. Additionally, the machine is much more hygienic than traditional methods, as it reduces the risk of contamination from pathogens and other harmful microorganisms that can be present in wet cow dung.

powder fertilizer production line site

powder fertilizer production line site

Another benefit of the cow dung powder making machine is that it produces a high-quality fertilizer that is rich in nutrients and organic matter. This fertilizer can be used to improve soil health and promote plant growth, leading to higher crop yields and better-quality produce.

In conclusion, the cow dung powder making machine is a valuable tool for farmers and gardeners who are looking for a cost-effective and environmentally-friendly way to improve their soil and promote plant growth. With its fast and efficient processing capabilities, high-quality output, and hygienic operation, this machine is a must-have for anyone who wants to maximize their agricultural productivity while minimizing their impact on the environment.

You can check this page for more about !

https://www.manuremanagementplan.com/powder-fertilizer-production-line-for-goat-manure-disposal/

Our Reader Score
[Total: 0 Average: 0]

poultry manure drying machine

April 29, 2023

Agriculture, Animal Farm, Animal manure management, bio fertilizer production line, bio fertilizer production project, Biotech, Bulk blending fertilizer making, Business Manufaturer, Business Supplier, Car Share, Carbon, chemical fertilizer making, chicken compost, chicken manure composting, Community Design, Complex fertilizer manufacturing system, Compost Equipment, compost fertilizer production, Compost Technology, Composting, Compound fertilizer making equipment, Compound fertilizer making line, compound fertilizer manufacturing, Cow dung as fertilizer, Cow dung fertilizer making machine, Dispose of animal manure, Double Roller Granulator, Dry fertilizer pellet mking machine, Earthworms, Etc, Energy, Enterpreneurship, Fertilizer, fertilizer coater, fertilizer coating machine, Fertilizer Drying Machine, fertilizer equipment, Fertilizer Factory, Fertilizer Granulating Machine, fertilizer granulator, fertilizer making, fertilizer making machine, Fertilizer Plant, fertilizer processing, fertillizer production line, Fiber, Financing, Fun, Governanace & Policy, granular compound fertilizer production equipment, Granulating Machine For Fertilizer, Growing, Health, Healthing & Health, Housing, making bio fertilizer, making organic fertilizer, manure recycling, Manure separator, Nature, NPK fertilizer pelletizer, NPK fertilizer plant, NPK fertilizer production line, organic fertilizer granulator, Organic fertilizer making line, Organic fertilizer manufacturing, organic fertilizer manufacturing process, Organic Fertilizer Producing, Organic Fertilizer Production, Organic Fertilizer Production Line, organic fertilizer production machine, Organic Fertilizer Wet Granulating, Organic Waste Compost, Pedestrain, Pelletizer Used For Bentonite, Polar Sam, poultry manure pelletizer, powdery organic fertilizer making, Process, Processing, Project Solutions, Recreation, Recycling, Safety Nets, Sequestrattion, Share Your Vision, Shared Stuff, Solid Waste, Time & Money

Comments Off on poultry manure drying machine


Poultry manure drying machine is a type of equipment used for drying poultry manure, which is one of the most commonly used organic fertilizers in agriculture. Poultry manure contains a lot of nitrogen, phosphorus, potassium, and other trace elements, which can provide nutrients for crops and improve soil fertility. However, the moisture content of fresh poultry manure is high, which can easily cause environmental pollution and reduce the fertilizer efficiency. Therefore, it is necessary to dry the poultry manure before use.

Poultry manure drying machine can effectively solve the problem of poultry manure drying. The machine is designed with a special structure, which can quickly and efficiently remove the moisture in the manure and make it into a dry and granular form, which is easy to store and transport. The poultry manure drying machine has many advantages, including high efficiency, low energy consumption, and environmental protection.

The poultry manure drying machine has a unique design that allows it to dry the poultry manure quickly and evenly. The machine is equipped with a high-speed rotating drum, which can continuously stir the manure and break it up into small particles. At the same time, hot air is blown into the drum to evaporate the moisture in the manure. The machine also has a temperature control system, which can automatically adjust the temperature of the hot air to ensure that the manure is dried at the appropriate temperature.

The poultry manure drying machine has a high efficiency in drying poultry manure. Compared with traditional drying methods, such as sun drying and air drying, the poultry manure drying machine can significantly reduce the drying time and improve the drying efficiency. The machine can dry the poultry manure to a moisture content of less than 15%, which meets the requirements of most fertilizer production processes.

The poultry manure drying machine is also energy-efficient. The machine uses a special heat source, such as biomass or natural gas, to provide the heat energy needed for drying. Compared with traditional drying methods that rely on sunlight or electric heating, the poultry manure drying machine can save a lot of energy and reduce the cost of production. At the same time, the machine has a low emission of pollutants and does not produce harmful gases, which can effectively protect the environment.

In addition, the poultry manure drying machine has a wide range of applications. In addition to drying poultry manure, the machine can also be used to dry other organic materials, such as cow dung, pig manure, and sewage sludge. The dried materials can be used as organic fertilizers, fuel, or feed.

In conclusion, the poultry manure drying machine is an essential equipment for modern agriculture. It can effectively solve the problem of poultry manure drying, reduce environmental pollution, and improve fertilizer efficiency. The machine has many advantages, including high efficiency, low energy consumption, and environmental protection. With the development of agriculture, the poultry manure drying machine will play an increasingly important role in promoting sustainable agriculture and protecting the environment.

As a supplier of fertilizer making machine, we offer several hot types of poultry manure drying machines. You can check our website to pick this one you like!

Poultry Manure Drying Machine

Our Reader Score
[Total: 0 Average: 0]

Comprehensive Prevention and Control of Water Pollution


Taking the water system as a whole, according to the geographical distribution of towns and industrial and mining enterprises along the coast of the water system, as well as the self-purification capacity, pollution capacity and pollution status of the water system, comprehensive prevention and control measures are taken to prevent and control water pollution. It includes various engineering technology means and management measures, which have the characteristics of integrity, comprehensiveness and regionality.
Comprehensive prevention and control of water pollution is a comprehensive application of various measures to prevent and control water pollution. Prevention and control measures involve two types of engineering and non-engineering, mainly:
(1) Reducing the discharge of wastewater and pollutants, including saving production wastewater, stipulating water quota, improving production technology and management system, increasing the reuse rate of wastewater, adopting new technology without pollution or less pollution, and formulating material quota, etc. For water-deficient cities and industrial and mining areas, regional recycling water and wastewater reuse systems should be developed.
(2) Developing regional water pollution prevention and control systems, including formulating urban water pollution prevention and control plans, river basin water pollution prevention and control management plans, implementing the total amount control system of water pollutant discharge, developing sewage after proper manual treatment for irrigation farmland and reuse for industry, establishing sewage reservoirs without polluting groundwater, and low water. Periodic storage of sewage reduces sewage discharge load and conducts controlled dilution during flood period.
(3) Develop wastewater treatment technologies with high efficiency and low energy consumption to treat wastewater.

Meaning

Comprehensive prevention and control of pollution refers to the comprehensive use of various measures to prevent and control water environmental pollution from the whole point of view. It is very necessary to implement comprehensive prevention and control of water pollution, because China is a country with relatively scarce water resources, and there are two manifestations: one is resource-based water shortage, the other is water-quality-based water shortage. For a long time, the purification treatment of sewage outlet based on point source control can not effectively solve the problem of water pollution. Comprehensive prevention and control of water pollution must be carried out from the overall point of view of the region and water system in order to fundamentally control water pollution and solve the problem of water shortage caused by water quality.

Why do this

The necessity and urgency of comprehensive prevention and control of water pollution are embodied in two aspects: first, the contradiction between water resources shortage and unbalanced supply and demand is prominent, and the serious pollution of water environment makes this contradiction more prominent and urgently needs to be solved;

Why is it so urgent?

Secondly, the purification treatment of sewage outlets based on point source control can not effectively solve the problem of water pollution. Comprehensive prevention and control of water pollution must be carried out from the whole region or water system, and the tail control of point source control should be transferred to the source control in order to control water pollution fundamentally.

Principle

The basic principle of sewage prevention and control is the combination of prevention, treatment and management.

Prevention

Through effective control and preventive measures, the amount of pollutants discharged by pollution sources can be reduced to the minimum.
(1) For industrial pollution sources, the most effective control method is to promote cleaner production. Cleaner production refers to the advanced production technology with the smallest utilization of resources and energy and the least pollution emission. The main technical routes adopted in cleaner production include: reforming raw material selection and product design, replacing toxic and harmful raw materials and products with non-toxic and harmless raw materials and products; reforming production process to reduce consumption of raw materials, water and energy; adopting recycling water system to reduce wastewater discharge; and recycling the usefulness of wastewater. Composition, reduce the concentration of wastewater, etc. Cleaner production advocates life cycle analysis and management of products rather than end-treatment.
(2) For domestic pollution sources, effective measures can be taken to reduce their emissions. Such as promoting the use of water-saving appliances, improving people’s awareness of water-saving, reducing water consumption, thereby reducing domestic sewage discharge.
(3) For agricultural pollution sources, in order to effectively control non-point pollution sources, we must start from “prevention”. Promoting scientific fertilization and rational use of pesticides in farmland can greatly reduce the residual fertilizers and pesticides in farmland, thereby reducing the amount of nitrogen, phosphorus and pesticides contained in farmland runoff.

Governance

Through various measures to control pollution sources and polluted water bodies, the pollution sources can achieve “standard discharge” and the water environment can achieve the corresponding water quality function.
It is very difficult or almost impossible for pollution sources to achieve zero discharge. Therefore, it is necessary to properly treat polluted (waste) water to ensure that the discharge standards set by the state or local authorities are met before it is discharged into the water body. Great attention should be paid to the relationship between industrial wastewater treatment and municipal wastewater treatment. For industrial wastewater containing acid, alkali, toxic and harmful substances, heavy metals or other special pollutants, local treatment should be carried out in the plant to meet the discharge standards to the water body or the water quality standards to the urban sewer. Those industrial wastewater similar in nature to municipal domestic sewage can be treated together with municipal sewage as a priority. It is not only unnecessary but also uneconomical to set up sewage treatment facilities separately. The design of urban sewage collection system and treatment plant should not only consider the need of water pollution prevention, but also the need to alleviate the contradiction of water resources. In areas where water resources are scarce, the treated municipal wastewater can be reused for agriculture, industry or municipal administration and become stable water resources. In order to meet the needs of wastewater reuse, its collection system and treatment plant should not be too centralized, but should be close to the reuse target.
In addition, according to the characteristics of water pollution, we should actively take physical, chemical, biological engineering and other means to control pollution, so that the deteriorated aquatic ecosystem can be gradually restored.

Management

Strengthen the supervision and management of pollution sources, water bodies and water treatment facilities in order to promote treatment. Pipe also plays an important role in water pollution control. Scientific management includes regular monitoring and inspection of pollution sources, water treatment facilities and sewage treatment plants, and regular monitoring of water environmental quality to provide basis and information for environmental management.

Main methods

Functional zoning of water environment is the basis for comprehensive prevention and control of water pollution
According to the current functions of water environment and the needs of economic and social development, the functional zoning of water environment is based on surface water environmental quality standards, which is the basis of water source protection and water pollution control. For example, the surface water environmental quality standard divides the water area control functions into five categories: Class I is mainly applicable to source water and national nature reserves; Class II is mainly applicable to primary protection areas of centralized drinking water sources, precious fish protection areas, fish and shrimp spawning grounds; Class III is mainly applicable to centralized drinking water sources II. Class IV is mainly suitable for general industrial water use and recreational water areas where human body does not contact directly; Class V is mainly suitable for agricultural water use areas and waters where general landscape requires.

Principles and methods

The principles of division are as follows: priority protection of centralized drinking water source areas; water body should not reduce its current use function, taking into account planning function; water areas with multiple functions should be classified according to the highest function; professional water standard requirements should be considered as a whole; consideration should be given to each other between upstream and downstream areas, with due consideration to potential functional requirements; and rational use of water body itself. Net capacity and environmental capacity; Consider the combination of land industrial rational layout; Consider the impact on underground drinking water sources; Practical and feasible, easy to manage.

Functional zoning method: according to the principle of adapting measures to local conditions and seeking truth from facts, according to actual measurement, empirical analysis and administrative decision-making.
Controlling pollution and protecting water sources according to functional areas.

(i) The level of protection shall be defined according to the functions of the waters and the requirements for water pollution control shall be put forward. For example, special protected waters refer to the first and second categories of national Surface Water Environmental Quality Standards (GB3838-2002). No new sewage outlets shall be built for such waters. Existing sewage discharge units shall be strictly controlled by local environmental departments in order to ensure that the water quality of accepted waters meets the water quality standards for specified purposes; and key protected waters shall be protected. It refers to the third class waters stipulated by GB3838-2002, and the first class discharge standards stipulated in the Comprehensive Sewage Discharge Standard (GB8978-1996) are applied to the sewage discharged into the waters.
(ii) The total amount control shall be implemented according to the functional areas. The so-called total amount control refers to the maximum allowable emission of some kind of pollution in order to maintain the environmental target value of an environmental functional area. Therefore, water environmental functional zoning is the basis for implementing total water pollution control.
Formulating comprehensive prevention and control plan of water pollution

Main contents and working steps

(i) Based on the investigation and evaluation of water environment, the main problems of water environment are analyzed and determined.
(ii) Division of water pollution control units. According to the analysis conclusion of water environment problems, considering the administrative division, water area characteristics and pollution source distribution characteristics, the source area and receiving water area are divided into water pollution control units.
(iii) Put forward environmental objectives and demonstrate accessibility. At the Fourth Session of the National People’s Congress, the strategic goal of environmental protection across the century was clearly put forward, which is the basis for the goal of comprehensive prevention and control of water pollution. Environmental objectives should include the total amount control objectives of major pollutants and the specific objectives of various sub-items of comprehensive water environment improvement. It is necessary to demonstrate the accessibility of environmental objectives.
(iv) Determine the amount of major pollutant reduction and the proportion of reduction allocation.
(v) To formulate a comprehensive water pollution prevention and control plan and implementation plan.
(vi) Support and guarantee for the implementation of the plan. Including: analysis of sources of funds, formulation of annual plans, implementation of pollutant discharge declaration and registration and pollutant discharge permit system proposals, as well as the necessary technical support.
Several principles that must be adhered to in formulating comprehensive water pollution prevention and control plan
(i) Focusing on economic construction is conducive to the coordinated development of economy and environment.
(ii) Take rational development and utilization of water resources as the core, focusing on the whole process control. By changing the mode of economic growth and promoting cleaner production, pollution can be eliminated in the process of economic reproduction.
(iii) Overall planning, highlighting key points, adapting measures to local conditions and stressing practical results.
(iv) adhering to the principle of comprehensive improvement. Systematic analysis of the planning scheme is needed to achieve overall optimization.

Emission permit system, transition from concentration control to total quantity control

Practice has proved that in carrying out this system, we must follow the following five requirements in the light of China’s current technological level and management system.
(1) Determine the total amount control target from the actual point of view. When it is difficult to determine the environmental capacity of the receiving water body for discharging pollutants, according to the principle of the total amount control plan put forward by the State Environmental Protection Administration in December 1995, the total amount of discharged major water pollutants in 1995 can be regarded as the target total amount, and the proportion of reduction can be determined according to the actual technical and economic level of the region, and allocated to the main body. Pollution sources.
(2) Choose the target of issuing certificates. The main target of issuing permits is the large polluters in the region. A city can catch more than a dozen or dozens of households. It is necessary to select the key control points through investigation and evaluation of pollution sources. For example, Anyang City put forward that we should do a good job of 2, 5 and 8, and control 8 and 9, that is, we should catch 20, 50 and 80 large polluters in batches, and control 70%, 80% and 90% of the city’s water pollution load.

  • Control the total amount of sewage. Measure according to local conditions and control the total amount of sewage.
  • Strengthen environmental supervision and management after issuance of certificates.
  • Pay attention to practical experience and constantly improve the level. In order to implement the sewage discharge permit system, we should first carry out pilot projects, sum up experience and gradually popularize it.
  • But we should also pay attention to the new problems in the process of implementation, such as the paid transfer of pollutant discharge indicators and the trading of pollutant discharge rights.
  • Comprehensive Prevention and Control of Water Pollution in Township Enterprises
  • The discharge of industrial wastewater from township enterprises was only 3.9 billion tons in 1997.
Our Reader Score
[Total: 1 Average: 5]

Greenhouse Gases


Not every gas in the atmosphere absorbs intensely long-wave radiation from the ground. The greenhouse gases in the earth’s atmosphere are called greenhouse gases, mainly carbon dioxide (CO2), methane, ozone, nitrous oxide, freon and water vapor. They absorb almost all the long-wave radiation emitted from the ground, and only a very narrow region absorbs very little, so they are called “window region”. It is through this window that the earth returns 70% of the heat from the sun to the space in the form of long-wave radiation, thus maintaining the ground temperature unchanged. The greenhouse effect is mainly due to the increase in the number and variety of greenhouse gases by human activities, which makes the 70% value decrease and the remaining heat makes the earth warm.

What is greenhouse gas?

However, although CO2 and other greenhouse gases have a strong ability to absorb long-wave radiation from the ground, their amount in the atmosphere is very small. If the atmospheric state of pressure as a atmospheric pressure and temperature of 0 C is called the standard state, then the whole atmosphere of the earth is compressed to this standard state, its thickness is 8000 meters. At present, the content of CO 2 in the atmosphere is 355 ppm, or 355 parts per million. Converting it to the standard state, it will be 2.8 meters thick. This is 2.8 meters thick in the atmosphere of 8,000 meters thick. Methane content is 1.7 ppm, corresponding to 1.4 cm thick. The ozone concentration is 400 ppb (ppb is one thousandth of ppm), which is only 3 mm thick after conversion. Nitrous oxide is 310 ppb, 2.5 mm thick. There are many kinds of freon, but the most abundant Freon 12 in the atmosphere is only 400 ppt (ppt is one thousandth of ppb), converted to the standard state of only 3 microns. This shows that there are few greenhouse gases in the atmosphere. It is also for this reason that human release without restrictions can easily lead to rapid global warming.

History of development

As early as 1938, British meteorologist Carlinda pointed out that CO2 concentration had risen by 6% since the beginning of the century after analyzing sporadic CO2 observations around the world at the end of the 19th century. He also found that there was a warming tendency in the world from the end of last century to the middle of this century, which caused great repercussions in the world. To this end, Kellin of Scripps Oceanographic Research Institute established an observatory in 1958 at an altitude of 3,400 meters in the Maunaroya Mountains of Hawaii, and began the precise observation of atmospheric CO2 content. Because Hawaii is located in the middle of the North Pacific Ocean. Therefore, it can be considered that it is not affected by terrestrial air pollution and the observation results are reliable.

From April 1958 to June 1991, the atmospheric CO2 concentration in the Maunaroya Mountains was observed. It was found that the atmospheric CO2 content in 1958 was only about 315 ppm, which reached 355 ppm in 1991. The seriousness of the problem also lies in the fact that only about half of the 5.5 billion tons of fossil fuels (about 4 tons of CO2 per ton) that humans burn annually (1996) enter the atmosphere and the rest are mainly absorbed by marine and terrestrial plants. Once the ocean is saturated with CO2, the atmospheric CO2 content will increase exponentially. In addition, they also found seasonal variations in CO2 content, with a difference of 6 ppm between winter and summer. This is mainly due to the winter drought and summer glory of vegetation on the vast continents of the Northern Hemisphere, that is, plants absorb CO2 in summer, which makes the atmospheric CO2 concentration relatively lower.

Includings

According to the determination of CO2 concentration in the air of sealed bubbles in the Antarctic and Greenland continental ice sheets, the CO2 content in the atmosphere has been relatively stable for a long time in the past, about 280 ppm. Only from the mid-18th century, before and after the Industrial Revolution began to rise steadily. That is to say, it took 240 years for human beings to increase the atmospheric CO2 concentration from 280 ppm to 355 ppm.

Methane is the second most important greenhouse gas after CO2. Although its concentration in the atmosphere is much lower than CO2, its growth rate is much higher. According to the Second Climate Change Assessment Report issued by the Intergovernmental Panel on Climate Change (IPCC) in 1996, CO2 increased by 30% in 240 years from 1750 to 1990, while methane increased by 145% in the same period. Methane, also known as biogas, is produced when organic matter decays under anoxic conditions. For example, paddy fields, compost and animal manure all produce biogas. Nitrogen monoxide is also known as laughing gas, because inhaling a certain concentration of this gas can cause facial muscle spasm, which looks like laughing. It is mainly produced by burning fossil fuels and organisms using chemical fertilizers. Although the ozone content in the atmosphere decreases in the stratosphere, it increases in the troposphere, which will be discussed later. Freon gases are compounds of chlorine, fluorine and carbon; they do not exist in nature and are entirely human-made. Because of its low melting point and boiling point, non-flammable, non-explosive, odorless, harmless and excellent stability, it is widely used in the manufacture of refrigerants, foaming agents and cleaners. Although the highest concentrations of Freon 12 and 11 in the earth’s atmosphere are very few, their growth rates have been very high in the past, both of which are 5% per year. Because of its severe destruction of the ozone layer in the atmosphere, its concentration in the atmosphere is expected to decrease gradually from the beginning of the 21st century according to the 1987 International Montreal Protocol.

It should be noted that although the atmospheric concentration of greenhouse gases other than CO2 is much lower than that of CO2, some of them are several orders of magnitude smaller, their greenhouse effect is much stronger than that of CO2. Therefore, their contribution to atmospheric greenhouse effect, according to the second IPCC Report, is only one order of magnitude lower than that of CO2. If their total contribution to the greenhouse effect of the Earth’s atmosphere is small compared with CO2 before 1960, it is not negligible that in the near future they will go hand in hand with CO2 and even exceed CO2.
April 2, 2018, DOE Labor

Our Reader Score
[Total: 0 Average: 0]

Learn How To Compost


Ways to Make Composts

How to Compost

Our Reader Score
[Total: 1 Average: 5]

The Method of Making Compost Fertilizer from Straw

  1. Method of composting:
  2. Site selection Fertilizer-making site should be located in the leeward sunward area with flat terrain and close to the water source, which can be made in the open air all the year round. A kind of
  3. Material preparation (Take 1 ton of dry straw as an example)

(1) 1000 kg of crop straw.

(2) 20 kg corn flour or wheat bran or rice bran, and 5-10 kg urea can be added if conditions permit.

(3) Bacillus Yikang compost fermentation strain 400g (two bags of this product).

Production method

(1) The length of straw (e.g. corn straw) should be 1-3 centimeters when it is crushed or cut by a hay cutter (wheat straw, rice straw, leaves, weeds, peanut seedlings, bean straw, etc.) can be fermented directly, but the fermentation effect is better after crushing.

(2) Water the crushed or cut straw with water to wet and permeate, and the moisture content of straw is generally controlled at about 60%.

(3) Mix 20 kilograms of corn flour (or wheat bran or rice bran) with 400 grams of bacteria. Sprinkle corn flour (or wheat bran or rice bran) mixed with bacteria evenly on the surface of straw irrigated with water by hand. Use spade and other tools to turn over and mix, stack into long strips of 2 meters wide, 1.5 meters high and unlimited length, and cover them tightly with plastic cloth.

Decay process

(1) Warming up stage: from room temperature to 45 C, generally only one day, at this time can turn over the stack.

(2) In the future, when the heap temperature reaches above 60 C, it needs to be turned over, and the basic state of decomposition can be reached in 15-20 days, and the fertilizer can be applied directly. Maturity mark straw turns brown or black-brown, soft and elastic when wet, brittle and fragile when dry.

Application Method

(1) Straw fertilizer is generally used as base fertilizer and can be applied wetly. Soil should be covered for topdressing. Semi-decomposed fertilizer is applied to crops with longer growth period, straw fertilizer with higher maturity is applied to crops such as melons, fruits and vegetables with shorter growth period, semi-decomposed fertilizer is used in sandy soil, and fertilizer with higher maturity is best applied to clay soil.

(2) Straw fertilizer is rich in organic matter, balanced nutrients of nitrogen, phosphorus and potassium, and contains various trace elements. It is a suitable fertilizer for all kinds of crops and soils. It has remarkable effects on improving crop quality and increasing yield. A kind of

Note: It is suggested that 20-30% livestock and poultry manure or other organic substances should be properly added in composting, so that the fertilizer efficiency is better and more comprehensive.

(3)Rapid Fermentation of Straw Returning to Field:

Quick Returning Technology: Digging Trough – Stacking Straw – Adding Bacteria and Yikang – Sealing

1) Digging trough: Digging a low trough 1.5-2 m wide and 0.3 m deep in idle fields such as fields and courtyards, the length of which can be determined according to the amount of straw. _

2) Stacking straw: According to the standard of 60% moisture content of straw (i.e. holding the water in groups and keeping the watermarking by hand without dripping, it is appropriate to lay down and disperse), so that the straw can absorb enough moisture and accumulate straw in the tank.

3) Adding organic fertilizer starter: first, add 1 bag (200g) of Bacteria Yikang to dilute 20 kg corn flour or rice bran or wheat bran (1000 kg straw material), then stack straw while adding animal manure or urea to adjust C/N ratio and evenly sprinkle corn flour with Bacteria Yikang. Or rice bran or wheat bran.

4) Sealing: When the pile is about 1:5 meters high, photograph it and seal it with clay or plastic film. About 15 days in summer and 40 days in winter can be fertilized and returned to the field.

 

Quick in-situ Returning Technology of Straw Returning to the Field: Straw Crushing-Adding Bacteria Yikang and Feces-Sealing-Tillage-Tillage

1) Straw crushing: The straw is crushed into small segments of about 3-4 cm with a crusher.

2) Add Bacteria Yikang: first, add 2 bags of Bacteria Yikang (400 grams) into 40 kg corn flour or rice bran, wheat bran dilution; decomposed feces and urine 300 kg; all kinds of straw 700 kg. Mix the above materials well, then add water, adjust the moisture content of straw to about 60%, accumulate in the earth and compact slightly. A kind of

3) Sealing: After accumulating the material, the material is sealed with mud. A kind of

4) Tillage: Sprinkle the rotten straw evenly on the ground, and immediately carry out deep tillage, raking and further maturation of the straw.

Rapid Decomposition and Return of Rice Straw to Field Technology Harvesting Fertilizing Adding Green Seedlings to Strengthen Throwing Seedlings

1) Harvesting: one is to keep high stubble harvested, tail grass left in the field, 100% straw returned to the field; the other is low stubble harvested, after threshing also returned to the field in full.

2) Fertilization: Planned application of organic and inorganic fertilizers in the field.

3) Bacterial Yikang: According to 1000 kg of straw, add 500 grams of Bacterial Yikang, evenly sprinkle in the field. When applied, the water layer in the field was 2-3 cm.

4) Seedling throwing: After applying Bacillus Yikang, the farmland can be thrown for one day. When throwing rice seedlings, the surface of the field should maintain a certain water layer. The water layer of the high stubble paddy field and straw strip mulch is shallow, 2-3 cm. The paddy field covered with straw is deep, about 5 cm. Submerged straw is the standard to ensure the contact between seedling roots and water.

Technical Operating Points

1) Adequate moisture: straw must absorb enough water, the moisture content is generally controlled at about 60%. A kind of

2) Adjust the appropriate C/N: Add appropriate amount of animal manure or nitrogen fertilizer to regulate the C/N of the compost.

3) Blend material: Bacteria Yikang added should be evenly sprinkled in straw, or stirred evenly with utensils.

4) Ventilation: Microorganisms ferment faster under aerobic conditions, and the condition of ventilation will directly affect the stalk maturation rate. So don’t step on it when stacking, in order to facilitate ventilation. After stacking, it is sealed with mud mixed with straw. When the temperature in the stack exceeds 65 degrees, ventilation or dump should be adopted.

5) Sealing: When stacking, the surrounding and top of the reactor should be sealed to prevent water evaporation and nutrient loss.

6) Warming up: When composting straw in winter or cold area, plastic film is added to the compost to increase the temperature. Fourth, attention should be paid to the sufficient moisture content of materials for stacking and composting, the uniform mixing, sealing, heat preservation and water retention, so as to ensure that straw is quickly matured and accumulated without stepping on it, and take a slight photo.

Last, the suitable area, all kinds of straw crops can be treated by straw composting and returning technology after harvesting.

Our Reader Score
[Total: 1 Average: 5]



Categories